3rd Annual Advanced Course on Knee Surgery January 17-22 , 2010 , Val D'Isere ,

Results of High Tibial Osteotomy Osteotomy: Review of the Literature

A Amendola MD

İ

Professor, Dept of Orthopaedic Surgery Director, UI Sports Medicine University of Iowa Hospitals and Clinics

Disclosures

- Conflict of interest related to this presentation:
- Arthrex

- 53 yo male, former competitive runner and soccer player
 S/P bilat. medial meniscectomy in 2001 and 2005 & left microfracture in 2005
- Confirmed grade 4 cartilage loss med comp
- Now increasing med knee pain L>R with exercise and at rest..
- On exam now, stable knee with complete ROM, minimal swelling.

Unicompartmental OA in the Young

- Medial > lateral
- Varus > valgus
 - Post meniscectomy
 - Post ACL injury
 - Primary knee OA

Early Knee OA Operative Considerations: Figure out the problem Alignment, instability, meniscus, cartilage Assess axial and sagittal plane alignment Goals of surgery will affect decision Decrease pain Improve function for ADL's

Return to activity

Osteotomy : technical issues Techniques for osteotomy:

- rechniques for osteoto
- Proximal Tibial
 - Lateral closing
 - Medial opening
 Acute vs gradual distraction
- Distal Femoral
- Medial closing
- Lateral opening

	Aathors	Near	Follow-up	Results
Overall results	Aglioni et al ^a	1983	- 10 years	Satisfactory outcomer in 87% (at 2 to 5 years), in 70% (at 6 to 10 years) and in 64% (+10 years)
of HTO	Matthews et al. ⁷	1988	Mean of 7 years (1.4-14.4 years)	Satisfactordly results in 86% at 1 year, in 64% at 3 years, in 50% at 6 years and in 28% at 9 years.
	Radan et al. ¹⁰	1990	Mean of 5.8 years (3-9 years)	69% of good or excellent results at last follow-up
√good or excellent short and midterm results in	lvarsson et al. ¹¹	1990	5 to 13 years	75% of good and acceptable outcomes at 5.7 years and 60% at 11.5 years
	Naudie et al. ¹⁰	1999	10 to 22 years	55% of patients at 5 years, 51% at 10 years, 59% at 15 years and 59% at 20 years did not nequine a TKA
testestestestestestestestestestestestest	Sprenger et al. ¹¹	2003	10 years	Survival rates at ten years follow-up were 65%-74%
isolated medial UA	Keshino et al.14	2004	15-20 years	Survivorship of 97,3% at 7 years, 95,1% at 10 years and 86,9% at 15 years from surgery
coutcomes gradually	Tang et al. ¹¹	2005	20 years	Survival rates of \$9.5% at 5 years, 74.7% at 10 years and 66.9 % for 15 and 20 years
deteriorate to a success	Asik et al. ¹⁸	2006	Mean 34 months (15-60)	Significant improvement of pain and knee function
rate between 60% and 70%	Chiang et al. ¹⁷	2006	Maan 15 years (13-16)	Excellent or good HSS scores in 18 knees at 5 years and in 13 knees at average 15 years
at 10 years from surgery ⁴ .	Papachriston et al. 14	2006	Mean 10 years (5-17)	Survival rate of 80% at 10 years, 66% at 15 years and over 52.8% at 17 years of follow-up
, , ,	Flecher et al. ¹⁹	2006	Mean 18 years (12-28)	Survival was 85% at 20 years
	Goldsner et al. ²⁰	2005	Mean 12.4 years (1-25)	Survival rates were 94% after 5 years, 79.9% after10 years, 65.5% after 15 years, and 54.1% after 18 years
	Akinski et al.21	2005	Mean 16.4 years (16-20)	Survival was 97.075 at ten years and 90.475 at 15 years
From Bonasia, Amendola, Int Orthopaedics, Se	pt 2009			

 Body mass index
 No evidence to conclude BMI has any effect on outcome

Why opening wedge?

Advantages

- Leave the fibula alone
- One osteotomy
- Maintains/corrects bony anatomy
- Less likely to overcorrect
- Revision to TKA ? simpler

Osteotomy fixation

- Stoffel et al.52 (2004)
- compared modified Puddu plate (Arthrex, Naples, Fla) vs the TomoFix plate (Synthes, Solothurn, Switzerland)
- Both provide immediate stability
 Tomofix has more torsional and axail stability with lateral cortex fracture Agneskirchner et al.⁵³ (2005)
- Agress (Cline) et al.⁻² (2003)
 compared four different plates ;Long rigid plate the most stable (Tomofix)
 Dorsey et al.⁵⁵ (2006)

- Dorsey et al.⁵⁵ (2006)
 in their biomechanical study tested three plate fixation devices; No difference in stability
 Spahn et al.⁵⁶ (2006)
 Compared fixation techniques (conventional plate, angle stable plate with or without spacer) and concluded that spacer implants have superior biomechanical properties and that angle stable plates may prevent fractures of the lateral cortex.

		Follow-up (Years)		Results
Katz	1987	2.9	21	Results worse than primary TKA
Staheli	1987	3.7	35	Results similar to primary TKA
Windsor	1988	4.6	45	80% had patella baja, results similar to revision TKA
Scuderi	1989	N/A	66	89% had patella baja
Amendola	1989	3.1		Knee scores similar, but less ROM in the HTO group
Jackson	1994		20	Worse results after HTO compared to UKR, because of complications
Mont	1994	6.1	73	Worse knee scores in HTO group
Gill	1995	3.8	30	Better results after HTO than after UKR
Bergenudd	1997	4-9	14	No difference in knee scores, more complications in HTO group
Toksvig	1998	10	40	knee scores same , RSA tibial movement same
Walther	2000		35	Worse knee scores in HTO group
Meding	2000	7.5	39	No difference in knee scores when compared with TKA in opposite knee

Naudie et al, 1999				
Subset of pa	atients			
 Age < 50 	yrs <u>and</u> Flexion > 120 degrees			
Increased p	robability of survival			
5 years	95 %			
10 years	80 %			
15 years	65%			

I

Summary

- Osteotomy is a good option in the right patient
- Assess the patient expectations and knee condition
- Accurate correction and performance of the surgery is essential
- my choice : Opening wedge HTO

